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Extraction of Interaction Energies From Scanning Tunneling

Microscopy and Field-Ion Microscopy Data

J.A. Meyer

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802

ABSTRACT

The extraction of adatom-adatom interaction energies from STM and FIM images is discussed.

For the case of comparing experimental data with a solved model (e.g. Monte-Carlo simulations),

an expression for the expected precision is derived. It is demonstrated that in the absence of any

Monte-Carlo calculations the interaction energies can be extracted if measurements are made at

more than one temperature. The relative uncertainty in the determination of the interaction energies

for the case of a solved vs. an unsolved model as a function of system size and temperature is pre-

sented.
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The interactions among adsorbates on surfaces are of fundamental interest. Adatom-adatom inter-

actions play an important role in (among other things) two--dimensional phase transitions, the for-

rnation of surface layer superstructures, surface reactions and adsorption and desorption phenom-

ena. Interaction energies have typically been studied with macroscopic techniques such as LEED

(low energy electron diffraction), TPD (temperature programmed desorption), isobars, isotherms,

and heat capacity measurements which average over thousands of atoms. The microscopic parame-

ters are subsequently extracted by fitting the macroscopically averaged experimental data to some

postulated model. An Arrhenius-type analysis is typically used for kinetic datal. 2 while Monte

Carlo simulations are often useful for analyzing equilibrium measurements. 3,4,5

Field ion microscopy (FIM) and scanning tunneling microscopy (STM) are techniques which give

real space images with atomic resolution. The data of interest here are snapshots of the atomic

positions of the adsorbate and substrate atoms. Given this type of information, statistical mechanics

can be used to analyze the data directly. The probability of observing the system in a given energy

state Ei at a temperature T is:

g(Ei)exp( -)

P(Ej,,T Q(T) 1)

where g is the number of ways of arranging the adatoms on the surfaces such that the energy is Ei

(the degeneracy), k is Boltzmann's constant, and Q is the partition function.

The discussion here is in terms of the lattice gas model, in which case g becomes the configurational

degeneracy. If the internal states of the actual system (vibrational, etc.) are nearly the same for all

configurations, or if the energies associated with these modes are small compared with the con-

figurational energies, then the lattice gas model holds to a good approximation.

Interaction energies have previously been extracted from FIM data by limiting the number of adsor-

bates studied at one time (usually to just two).6 In this case it is easy to calculate analytically the

degeneracy and thus extract the energies. 7 For the case of STM data, the system size and number of

adatoms are typically large, which makes the degeneracy incalculable for all but the simplest sys-

terns. In this case Monte Carlo calculations have been used for extracting interaction energies: the
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interaction energies in the simulation are adjusted until the computer generated images correlate

with the STM images. 4

In this letter a technique is presented which allows for the calculation of interaction energies with-

out the need for calculating the degeneracies. This technique is useful for analyzing snapshots of

many interacting adatoms which greatly increases the information per snapshot from the case of

only two adatoms. The outline of the rest of the letter is as follows. First, the model is presented for

an arbitrary type and number of interactions. Next, the temperature and system size dependencies

of the expected uncertainty of the extracted energy is derived for the lattice gas Ising system. Fi-

nally, the uncertainties obtained with this technique are compared to those obtained for the case of

comparing real space images to Monte Carlo simulations.

The data required for this technique are a large set of real space snapshots of the system at two (or

more) different temperatures. The fluctuations in the energy of the system 8 at the two temperatures

are exploited to extract the interaction energies. The first step is to hypothesize a set of interaction

types to be explored. There is no limit to the number or type of possible interactions: i.e. nearest

neighbor, next nearest neighbor, three body interactions etc.. For any set of interactions the total

configurational energy of the system can be written as:

gi = Ij N o~j 2)

where NJ is the number of neighbors of typej, and oj is the strength of the jth interaction, which is to

be determined.

The probability of observing the system with a given set of neighbors I Nj) at a temperature Ta is

g({N)})exp(- Xj/ p)
kTa n({N), Ta)

P({N, Ta) = Q(Ta) 3)

where n({Nj},T) is the number of experimental observations of the system in a state with {N1)

neighbors. The approximation becomes more exact as the total number of measurements,

in(NT), increases. By taking the ratio of the two probability distributions at each value of

I Nj), the degeneracy term, g, is eliminated. The various interaction energies are found by curve
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fitting the data; if one of the hypothesized interactions do not actually exist a small value will be

returned for the corresponding parameter.

If the two temperatures are equal no information about the interaction energy can be gained (with-

out solving the model); also, if the two temperatures are far apart the overlap between the two prob-

ability distributions is small and little information can be extracted. This implies that there exists

optimum temperatures at which to investigate the system. To explore this, the Ising model is used

for computational convenience. The problem can be stated: given that only nearest neighbor inter-

actions are important and without using any Monte Carlo simulations or knowledge of the solved

model, at what two temperatures should the system be observed in order to extract the interaction

parameter with the highest degree of precision?

The parent distributions from which measurements are to be taken are given by equation 3 for Ta

and Tb, where J is the actual interaction energy and I Nj) is number of nearest neighbors (Ni). The

ratio of the number of observations of Ni at the two temperatures is least squares fit to determine the

best estimate of the interaction parameter co. The sum of the squares of the residuals is:

X2= NI exp 4)
~ nNlTb k Ta Tb Q(W, Ta)

Since the ratio of the partition functions (QbQa) must also be treated as a parameter, the best value

of (o is found using a two parameter fit:

dX2 dX 2

-- =0
dw d(_)

The error in the determination of Co is given by:9

a =I DQ,Q, .) 1/'2 5)
D0 0 DQ,Q, - (DQ'o)2'

where

1 d2X 2  aQ Qb
yand = Qa
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In the limit of a large number of snapshots, (o and Q' can be determined exactly, that is

n(NI, Ta) exp.N l  (± )) Q(0), Tb)

n(Nl, Tb) k Ta Q(O, a)o 0  6)

for every Ni.

Using the above equations (0)/w for different size Ising systems can easily be calculated. These

are plotted in figure 1 as a function of Ta and Tb and in figure 2 as a function of Ta with constant Tb,

assuming that the same number of measurements are taken at both temperatures. There are several

important features shown in these figures: 1) the line Ta=Tb has cow equal to infinite, as expected, 2)

for higher temperatures the curves in figure 1 become parallel to the temperature axes, 3) the tem-

perature range over which the interaction parameter can be extracted is larger for smaller systems,

and 4) the two optimum temperatures move closer together and towards the temperature at which

the heat capacity is a maximum as the system size increases. These results are particularly impor-

tant in light of the recent developments in STM which allow the system size to be controlled by

building "corrals" for adatoms1O.

It is now useful to compare the expected error in the determination of the interaction energy for a

solved, (known g), vs. an unsolved model. For the case of a solved model the experimental energy

distribution is compared to the calculated distribution (e.g. through Monte Carlo simulation). The

analysis will be given for a system with a single (but arbitrary) interaction type. The parent distribu-

tion from which measurements are taken is given by equation 3 with I Nj = Ni. The experimental

data would consist of the set of n(NiT) which is, as above, the number of observations of the system

having Ni neighbors at a given temperature. A least square analysis is again used, in this case with

only one adjustable parameter. The sum of the squares of the residual is

g(Nl)exp( - )]2

= l Q(7)
The error in the determination of the interaction energy is obtained as above; giving for a solved

model

a. k 8)

where n is the number of measurements and C is the heat capacity. This simple but important result
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shows that the most information about the interaction energy is contained at the heat capacity maxi-

mum and falls off as I/NC.

Using equations 6 and 8, the ratio of the total number of measurements required to obtain the inter-

action energy to a specified accuracy for the case of an unsolved model (the new model presented

here) to the case of a solved (Ising) model can be determined. This is shown in figure 3) as a func-

tion of system size, assuming that all measurements are taken at optimum temperatures. For large

system this ratio seems to approach -2.6.

For two interactions it is easy to show that the uncertainty in the determination of the interaction

energies are

t_ - n 1k C22
0-11 /Y,2)CllC22 _ C1)9

where n is again the total number of measurements and

I
Cij =- -7-(< N^ N> - < Ni >< Nj >)

Notice that if C12 = 0 then equation 9 revert to equation 8. This result shows that for each interac-

tion parameter there is an optimum temperature at which to measure. Analogous results are easily

obtained for any number of interactions.

It has been demonstrated that, without running Monte Carlo simulations or otherwise solving the

model, interaction energies can be extracted from real space images if measurements are taken at

more than one temperature. Furthermore, a limit for the accuracy of the determination of interac-

tion parameters for a solved model as a function of number of measurements was derived. Finally,

the additiird information gained about the interaction energy by running Monte Carlo simulations

has been quantified. Future work in this area includes: 1) more complicated models, 2) the advan-

tage of taking data at more temperatures, and 3) the optimum search for the correct model (interac-

tion types and strengths), both with Monte Carlo simulations and with the technique introduced

here.
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FIGURE CAPTIONS

Figure 1) A gray scale of macko vs. Ta and Tb for four different size Ising systems determined as

per equation 6). Darker indicates a lower value of (ye. Notice that along Ta = Tb, yo equals infinity.

Figure 2) o/0 vs. Ta (with Tb optimized) for four different size Ising systems. These are simply
cross sections through the graphs in figure 1. The range of temperatures over which the interaction
parameter can be extracted is larger for smaller systems. This is simply due to the fact that there are
greater fluctuations for smaller systems.

Figure 3) The ratio of NdNb as a function of system size (LxL). Na is the number of measurements
required to obtain the interaction parameter to a certain degree of precision using the technique
introduced here. Nb is the number of measurements required to obtain this parameter to the same
precision if Monte Carlo calculations are used. If Monte Carlo calculations are carried out then
roughly a factor of 2.6 fewer snapshots are required to determine the interaction energy to the same
precision as in the absence of calculations (for systems >- 16x16).
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